The future of REST in
Drupal

@eOQipso | Mateu Aguild

Lullabot

What degree of
REST holiness?

0%

Of the sites will not need most of this.

~80%

Of the decoupled traffic will need this.

hat to ® What are the problems
expeCt ® What are the solutions to those

® How Drupal gets there

From this talk

When you leave the room

You should know that. .. I hope you learn. ..
There are missing pieces for REST To use an API more efficiently
There are known solutions for those To generate a flexible API
Contrib is going to fill the gap About JSONAPI, GraphQL, Collection

JSON, ...

You are unique

snowflakes

REST in

Drupal 8

Is truly awesome and flexible.

Flexible output (code)
Support for entities
Custom routes (code)
Media type negotiation
Access control
Authentication providers

Runner Import D_

Builder

http//dBdev.local/node X

GET v http://d8dev.local/node/1?_format=json

Body Cookies

Pretty aw Preview JSON

1-|{
2= "nid": [

3- {

4 "value®: "1"

5 }

1,
7= "uuid": [
8- {
9 "value": "4oe%%eec-8bBe-41f7-9400-fbde5c1749@2"
10 1

]’
12+ "wid": [
13+ {
14 "value®: "1"

16 1,
17~ "type": [
{

19 "target_id": "article"
20 1

21 1,

22+ "longcode": [

23 - {

24 "value": "en"

25 }

26 1,

No environment o ©

Status: 200 0K Time: 131 ms

D8 REST sample output

~

O~NOOUAWNR

llnidll : [{Ilvaluell : Illll}] -
"uuid": [{"value": "4ae99eec-8b0e-41f7-9400"}],
"type": [{"target_id": "article"}],
"langcode": [{"value": "en"}],
"title": [{"value": "Test"}],
"created": [{"value": "1450276200"}],
"changed": [{"value": "1450276218"}],
"body": [{

"value": "<p>test</p>\r\n",

“"format": "basic_html",

Ilsumma ryll: i1l

}]

API design

Problem 1: API design

WHAT WHY

Specify the format
Decide what to expose
Computed fields
Preprocess fields

Readability / Writeability
Replaceability

Meet existing API design
Existing tools

—t

QWO NOOUILE WNPRE

~

-

Ilnidll: II1]I'I

"uuid": "4ae99eec-8b0e-411f7-9400",
"type": "article",

"langcode': "en",

"title": "Test",

"created": "2016-12-03T23:37-01:00",
"changed": "2016-12-03T23:37-01:00",
"body": "test\r\n"

~

OO NOOUTESE WN -

“type: “article™,

"data": [
{llnamell: "nid", "Va.l.ue": II1II}'
{"name": "uuid", "value": "4a3e..9400"},
{"name": "langcode", "value": "en"},
{"name": "title", "value": "Test"},
{"name": "created", "value": "2016-12-03.."},
{"name": "changed", "value": "2016-12-03.."},
{"name": "body", "value": "test\r\n"},

"field_image": [
{

"target_id": "1",
"alt": "Get out!",
"title": "",
"width": "331",
"height": "248",
"url": "http://../2016-03/get-out.gif"

: B
Relationships FRETRpey
13 {
"target_id": "1",
From one resource to another UG Rl T taxonony/ tenm/ 1t
}
{

“"target_id": "3",
"url”: "/taxonomy/term/3"

Round trips

My cool article
pakmanlh June Gth, 2017

“'

Lorem ipsum dolor sit amet, consectetur adipiscing
elit. Nulla quam wvelit, vulputate eu pharetra nec,
matlis ac neque. Duis vulputate commodo lectus,
ac blandit elit tincidunt id. Sed rhoncus, tortor sed
eleifend tristique, tortor mauris molestie elit, et
lacinia ipsum quam nec dui. Quisque nec mauris

Tags: vegan-frontend kittens

Comments

i pcambra
: ckrina

i penvaskito Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Nulla quam velit, vulputate eu pharetra nec, mattis ac

Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Nulla qguam velit, vulputate eu pharetra nec, mattis ac

Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Nulla quam velit, vulputate eu pharetra nec, mattis ac

Extremely
simple

Your site is way more complex
than that.

Problem 2: Round trips

® Trip 1. GET articles/12

o Trip 2: GET articles/12 => tags/34
o Trip 3: GET articles/12 => tags/88
o Trip 4: GET articles/12 => users/88

B Trip 5: GET articles/12 => users/88 => images/5
o Trip 6: GET articles/12/comments
o Trip 7: GET articles/12 => comment/2

B Trip 8: GET articles/12 => comment/2 => user/8

® Trip 9: GET articles/12 => comment/2 => user/8 => image/9

o Trip 10: GET articles/12 => comment/7 [...]

Problem 3:

Versioning

Your APl keeps moving, your released
versions are stable.

Golden rule: do not change the
API. Add a new version.
Support different consumers
Ease the deploy process
Consumer locks to a specific
version

Discovering

— “What are the available articles?”
— “Give me the seasons associated to
show 23”

— “List all the users younger than 23"

Do not memorize UUIDs

Find content by its attributes
Make lists of content

Similar to \Drupal::entityQuery()

Problem 4: Listing / finding

We need a way to query the API for information.
Potentially any field that the API outputs should be used as a filter.
o Return a list of animals having the feed field “herbivore”.

® We need to support nested filtering. Things like:
o Give me all the articles written by authors having this role.
o Query for bands with at least one band member from Mallorca.

® Filtering using operators:

o Young authors: filter[author.age] [value]=35&filter[author.age] [operator]
=<

o In-style glasses: filter[year] [value] []=1980-01-01&filter[year] [value] []
=1989&filter[year] [operator] []=BETWEEN

A query
language for the
URL

Is not a good response size for a JSON object

Problem 5:

Big JSON (lots of kB)
Long transport time
Heavy to parse in consumer

Browser memory
The response is too big!

Problem 6: Discoverabhility

“l enjoy writing documentation for HTTP APIs, but above all |
love keeping the documentation up to date when the project
requires changes.”

— No one ever

(not even at a DrupalCamp Spain party)

Enough with the
problems!

No! There are

more issues!

Decoupling is not easy

Image styles

Presentation logic in backend
Data source aggregation
Content type negotiation
Aggregation queries

The solutions!

(aka consumer dictatorship)

Use the Drupal 8 guts

Use a combination of configuration
and custom Normalizers.

1. API design

Solution to the API design problem.
This is a Drupal-only problem

2. Round trips

We have too many round trips. We
want a single response with all the
information!

Allow the consumer to request
relationships to be embedded in
the original response.

Ex: My list of includes for articles/12

® Whatever the tags are
® Whatever the author is
o

3. Versioning

Don’t change the structure I’'m relying
on!

Just create different versions. The
consumer uses the one they need.

Ex: all these may return differently
® api.example.org/vl.7/articles/12
® api.example.org/vl.6/articles/12

L. Listing /

The query language for the URL

Define a query language & use
Drupal’s \Drupal::entityQuery()

The query language is used for the
consumer to ask what they want to
get.

The back end interprets that and
uses entityQuery to find the results.

Do not return everything! Use sparse
fieldsets.

Use the defined query language to
select the fields you want.

Ex: Only get these fields for the
article

..&fields=title, body,
author.name, tags.label,
tags.link,comments.author.
image

6. Discovery

Do not write docs, get them auto
generated. Introspect your data.

You have described your data in
Drupal already. Use it!

® Field definitions contain a lot of
information.

® Config entities have a YAML
schema.

® Typed datais a good data
introspection tool.

That sounds like
a lot of work

(contrib is still catching up)

You can use the RESTful module with 7.x-2 .x

today in Drupal 7.

Watch the video tutorials,
and solve these problems.

D8 version in the works.

... if you need it NOW (23/04/2016)

1. The content model

Building modern APle with RESTful

1. The content model
de Mateu Aguilé Bosch

de Mateu Aguilé Bosch

de Mateu Aguilé Bosch

de Mateu Aguilé Bosch

de Mateu Aguil6 Bosch

de Mateu Aguilé Bosch

de Mateu Aguild Bosch

Building Modern APIs with RESTful

%) | Mateu Aguilé Bosch + 23 videos + 6.702 visualizaciones » Actualizado por tiltima vez el 12 feb. 2016

This video series aims to be a guide to help you solve most of the issues that you encounter
when building APIs for Drupal backends with RESTful

This is an example driven series where we will be building a performant, flexible and modemn
APl wit... més

P Reproducir todo < Compartir £+ Configuracién de la lista de reproduccion

2. Exploring alternatives

3. Installing the RESTful module

4. Writing the first resource

5. Basic field definitions

5b. Field definition ID explanation

6. JSON API specification

B 7 Nectinn recnnreac tn aunid additinnal HTTD ramtiacte

JSON API (jsonapi.org)

Sparse fieldsets

Includes

Solves circular dependencies
Easy to read

Format for errors

Extensibility

One of the few stable standards

® It doesn’t have an opinion about: versioning and discovery

HTTP/1.1 200 OK

Content-Type: application/vnd.api+json

ndata": [{
"type": "articles
llidﬂ= IlllF’
"attributes": ({

W
L

"title": "JSON API paints my bikeshed!",
"body": "The shortest article. Ever."

Fo
"relationships":
"author": {
"data“: {“id"

}
Iy
"included": [
Y
"type": "people
"id": "42",
"attributes": {

{

. "42“' lltyp'e“: "people“}

"name": "John"

GET /articles?include=author&fields[articles]=title,body,author&fields[people]=name
HTTP/1.1

GraphQL request

{
user(id: 3500401) {

el
name,
isViewerFriend,
profilePicture(size: 50)
uri,
width,
height
I

{

It’s not REST, but that’s OK

GraphQL response

"user" : {

"id": 3500401,

"name": "Jing Chen",

"isViewerFriend": true,

"profilePicture": {
"uri": "http://someurl.cdn/pic.jpg",
"width"”: 50,
"height": 50

}

There are many more!

Siren
Collection+JSON
Uber

HAL

JSON-LD (+ Hydra)
Mason

® Falcor

