
The future of REST in 
Drupal

@e0ipso | Mateu Aguiló





What degree of 
REST holiness?



60%
Of the sites will not need most of this.



≈80%
Of the decoupled traffic will need this.



What to 
expect

From this talk

● What are the problems
● What are the solutions to those
● How Drupal gets there



When you leave the room

There are missing pieces for REST

There are known solutions for those

Contrib is going to fill the gap

You should know that…

To use an API more efficiently

To generate a flexible API

About JSONAPI, GraphQL, Collection 
JSON, …

I hope you learn…



You are unique 
snowflakes



REST in 
Drupal 8

Is truly awesome and flexible.

● Flexible output (code)
● Support for entities
● Custom routes (code)
● Media type negotiation
● Access control
● Authentication providers



D8 REST sample output



(simplified) Response body



API design



Problem 1: API design

WHAT

● Specify the format
● Decide what to expose
● Computed fields
● Preprocess fields

WHY

● Readability / Writeability
● Replaceability
● Meet existing API design
● Existing tools



Custom response



(another) Custom response



Relationships
From one resource to another



Round trips



Extremely 
simple 

example
Your site is way more complex 

than that.



Problem 2: Round trips
● Trip 1: GET articles/12

○ Trip 2: GET articles/12 => tags/34
○ Trip 3: GET articles/12 => tags/88
○ Trip 4: GET articles/12 => users/88

■ Trip 5: GET articles/12 => users/88 => images/5
○ Trip 6: GET articles/12/comments
○ Trip 7: GET articles/12 => comment/2

■ Trip 8: GET articles/12 => comment/2 => user/8
● Trip 9: GET articles/12 => comment/2 => user/8 => image/9

○ Trip 10: GET articles/12 => comment/7 […]



Problem 3: 
Versioning

Your API keeps moving, your released 
versions are stable.

● Golden rule: do not change the 
API. Add a new version.

● Support different consumers
● Ease the deploy process
● Consumer locks to a specific 

version



Discovering 
content

— “What are the available articles?”
— “Give me the seasons associated to 
show 23”
— “List all the users younger than 23”

● Do not memorize UUIDs
● Find content by its attributes
● Make lists of content
● Similar to \Drupal::entityQuery()



Problem 4: Listing / finding
● We need a way to query the API for information.
● Potentially any field that the API outputs should be used as a filter.

○ Return a list of animals having the feed field “herbivore”.

● We need to support nested filtering. Things like:
○ Give me all the articles written by authors having this role.
○ Query for bands with at least one band member from Mallorca.

● Filtering using operators:
○ Young authors: filter[author.age][value]=35&filter[author.age][operator]

=<

○ In-style glasses: filter[year][value][]=1980-01-01&filter[year][value][]

=1989&filter[year][operator][]=BETWEEN



A query 
language for the 
URL



2MB
Is not a good response size for a JSON object



Problem 5: 
Response 

bloat
● Big JSON (lots of kB)
● Long transport time
● Heavy to parse in consumer
● Browser memory

The response is too big!



Problem 6: Discoverability

“I enjoy writing documentation for HTTP APIs, but above all I 
love keeping the documentation up to date when the project 

requires changes.”

— No one ever

(not even at a DrupalCamp Spain party)



Enough with the 
problems!



No! There are 
more issues!

Decoupling is not easy

● Image styles
● Presentation logic in backend
● Data source aggregation
● Content type negotiation
● Aggregation queries
● …



The solutions!
(aka consumer dictatorship)



1. API design
Solution to the API design problem. 

This is a Drupal-only problem

Use the Drupal 8 guts

Use a combination of configuration 
and custom Normalizers.



2. Round trips
We have too many round trips. We 
want a single response with all the 

information!

Allow the consumer to request 
relationships to be embedded in 
the original response.

Ex: My list of includes for articles/12

● Whatever the tags are
● Whatever the author is
● …



3. Versioning
Don’t change the structure I’m relying 

on!

Just create different versions. The 
consumer uses the one they need.

Ex: all these may return differently

● api.example.org/v1.7/articles/12

● api.example.org/v1.6/articles/12

● …



4. Listing / 
finding

The query language for the URL

Define a query language & use 
Drupal’s \Drupal::entityQuery()

The query language is used for the 
consumer to ask what they want to 
get.

The back end interprets that and 
uses entityQuery to find the results. 



5. Response 
bloat

Do not return everything! Use sparse 
fieldsets.

Use the defined query language to 
select the fields you want.

Ex: Only get these fields for the 
article

…&fields=title,body,
author.name,tags.label,
tags.link,comments.author.
image



6. Discovery
Do not write docs, get them auto 
generated. Introspect your data.

You have described your data in 
Drupal already. Use it!

● Field definitions contain a lot of 
information.

● Config entities have a YAML 
schema.

● Typed data is a good data 
introspection tool.



That sounds like 
a lot of work
(contrib is still catching up)



... if you need it NOW (23/04/2016)

You can use the RESTful module with 7.x-2.x 
today in Drupal 7.

Watch the video tutorials,
and solve these problems.

D8 version in the works.



Examples!



JSON API (jsonapi.org)
● Sparse fieldsets
● Includes
● Solves circular dependencies
● Easy to read
● Format for errors
● Extensibility
● One of the few stable standards

● It doesn’t have an opinion about: versioning and discovery





GraphQL request

It’s not REST, but that’s OK



GraphQL response



There are many more!
● Siren
● Collection+JSON
● Uber
● HAL
● JSON-LD (+ Hydra)
● Mason

● Falcor


