
BUILDING THE 
FASTEST 
DRUPAL OF THE 
GALAXY



Hello!

I AM MATEU AGUILÓ
I am a senior developer at Lullabot

You can find me at @e0ipso



Hi!

I AM PEDRO GONZÁLEZ
I am a sysadmin at sbit.io

You can find me at @NITEMAN_es



DISCLAIMER
These are our experiences and what 
we learned so far.



Forget Drupal < 8
Why?

Drupal’s 1.001 caches
How?

Performance by design
What?



Drupal’s 1.001 
caches
Drupal 8’s cache system 
overview

Swappable 
cache 

backends

Cache 
strategy



SWAPPABLE CACHE BACKENDS

MemCache

Redis

Database

etc.

CacheBackendInterface



CACHE STRATEGY I: How to cache

cache it permanently

avoid doing the work at all

avoid doing the work during the critical 
path

defer executing it after the main content

cache it temporarily



“
There are only two hard things in 
Computer Science: cache 
invalidation and naming things.

— Phil Karlton



CACHE STRATEGY II:

Cache hit ratio

Cache invalidation complexity

Content as current as possible



Batteries included
Drupal 8 comes with caching 
enabled by default

Page 
Cache

Dynamic
Page 

Cache

https://www.drupal.org/documentation/modules/internal_page_cache
https://www.drupal.org/documentation/modules/internal_page_cache
https://www.drupal.org/documentation/modules/dynamic_page_cache
https://www.drupal.org/documentation/modules/dynamic_page_cache


Old good Page Cache: Upgraded!
Almost a “poor man’s Varnish”

1



Pros

◦ It’s super fast
◦ It shortcuts 

bootstrap
◦ It’s URL based
◦ New! Instantly 

updated when 
something is 
changed

PAGE CACHE

Cons

◦ Only for 
anonymous users

◦ Assumes pages are 
identical for all 
anonymous users

◦ Does not use 
Authentication API

◦ Poor extensibility



Dynamic Page Cache
Built upon render cache, powered by the cacheability 
metadata.
Personalized parts are excluded automatically: they are 
turned into placeholders.

2



Pros

◦ Still quite fast
◦ Works for all users
◦ Personalized parts 

are turned into 
placeholders 
automatically

◦ Instantly updated 
when something is 
changed

DYNAMIC PAGE CACHE

Cons

◦ Slower than Page 
Cache

◦ Require devs to be 
aware of it



Render API: 
Caching
Drupal needs to be aware of how dynamic your 
code is.

metadata placeholders



Cacheability Metadata
Keep Drupal informed about dependencies

1



CACHE TAGS
Avoid having stale content by using 
the appropriate cache tags.



CACHE 
CONTEXTS
Have different versions of a cache 
entry depending on the context



MAX-AGE
How old can your cache entry be 
before it’s considered stale



Drupal 8 requires 
developers, to 

think about 
caching



Mindset

If it varies depending on the situation, I'll use 
contexts

I’ll always think about cacheability when 
rendering anything

If it’s expensive I’ll cache it using cache keys

If it may become stale I’ll use max-age

If anything will cause it to be outdated I’ll use 
tags



EXAMPLE
Of cacheability metadata



A “REAL LIFE” PROBLEM

First node in the site:
◦ A block in the sidebar
◦ Contains a greeting to the user

You want this block to be cached!



Cache Tags
The first node

Max-Age
Permanent

Cache Context
The user display name



Common Pitfalls
When caches go sour



BUBBLING
Parents get children’s cacheability 
metadata



Cacheability metadata in the Black box is surfaced to 
the Maroon one, and then to the Pink one, and then to 
the Orange one, and then to the Blue one.

The Blue one (page) contains all that, plus the Green 
box, etc. Every box inherits and adds its own.



Placeholdering

Drupal’s learning magic

2



PLACEHOLDERING FOR LAZY BUILDING

Automatic - Manual?
Enables Small & Big Pipes

It all comes down to setting:
#create_placeholder = TRUE
When there is:
#lazy_builder = […, …]





Manually

Via the alter 
hooks:
◦ hook_block_build
◦ …

SETTING #create_placeholder to TRUE

Automagically

Detects 
configured 
conditions in 
cache metadata.



Perceived 
performance
How all we have seen will 
make Drupal feels faster

Today:
BigPipe

Tomorrow:
RefreshLess



◦ A placeholdering strategy.
◦ Applies when there is a session
◦ Works with and without 

javascript.

Big Pipe2.1



RefreshLess

Inspired by RoR’s turbolinks.

2.2



“
For us, the caching system alone 
justifies choosing the Drupal 8 
platform

— NITEMAN & e0ipso



Thanks!

ANY QUESTIONS?
You can find me at

@e0ipso

@NITEMAN_es


